skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thapa, Saroj"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Urban green space, comprising parks, fields, woodlands, and other semi-natural areas, is a fundamental component of urban ecosystems. The determination of the relationship between urban green space and urban sprawl is necessary to understand urbanization and the provision of urban ecosystem services. It has been hypothesized that the center of urban (i.e., population and economic) areas in fast-growing cities would migrate toward urban green space over time. To test this hypothesis, urban expansion and urban green space expansion were examined in five cities in China and five cities in the U.S. that were experiencing high rates of growth. Landsat images of those cities from 2000 to 2017 were combined with annual population and economic data and used to quantify the extent and migration of the urban green space. These data were analyzed using the center of gravity method by Grether and Mathys and circular statistics were used to determine the relationship between urban green space and urban expansion. Eight out of the ten cities showed a divergent pattern, i.e., the population and economic centers moved in a different direction to that of the urban green space. The movement of the mean centers of the urban green spaces in the U.S. cities was more consistent than that of the Chinese cities. Over 18 years, the movement of urban green space and urban expansion in the 10 cities showed a synchronous growth trend; however, the proportion of urban green space in the cities decreased. The urban expansion rate exceeded the population growth rate, which led to problems with an unreasonable urban sprawl that is likely to deplete the provision of ecosystem services in the future. In conclusion, the centrifugal forces of urban green space that lead to the movement of population and economic centers away from green spaces play a larger role in urban change than the centripetal forces that pull these centers toward urban green space. 
    more » « less
  2. All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and long-term environmental stability. Here, we report the addition of B-site cation and X-site anion (pseudo-halide) concurrently using Ba(SCN)2 (≤50%) in CsPbX3 NCs to reduce the lead and improve the photophysical properties and stability. The as-grown particles demonstrated an analogous structure with an almost identical lattice constant and a fluctuation of particle size without altering the morphology of particles. Photoluminescence quantum yield is enhanced up to near unity (~98%) by taking advantage of concomitant doping at the B- and X-site of the structure. Benefitted from the defect reductions and stronger bonding interaction between Pb2+ and SCN− ions, Ba(SCN)2-based NCs exhibit improved stability towards air and moisture compared to the host NCs. The doped NCs retain higher PLQY (as high as seven times) compared to the host NCs) when stored in an ambient atmosphere for more than 176 days. A novel 3D-printed multiplex color conversion layer was used to fabricate a white light-emitting diode (LED). The obtained white light shows a correlated color temperature of 6764 K, a color rendering index of 87, and luminous efficacy of radiation of 333 lm/W. In summary, this work proposes a facile route to treat sensitive lead halide perovskite NCs and to fabricate LEDs by using a low-cost large-scale 3-D printing method, which would serve as a foundation for fabricating high-quality optoelectronic devices for near future lighting technologies. 
    more » « less
  3. Abstract Doping of CsPbBr3perovskite nanocrystals (PNCs) to achieve excellent material properties is accelerating due to their increasing use in optoelectronic devices. Herein, a novel composite of CsPbBr3PNCs with nickel thiocyanate Ni(SCN)2is reported, exhibiting stronger photoluminescence (PL) and more extended stability. The addition of Ni(SCN)2at different molar concentrations reduces the surface trap states of the host PNCs. Therefore, the microstrain, dislocation density, PL emission linewidth, and Urbach energy decrease, resulting in an increased photoluminescence quantum yield (PLQY) from 72% to high above 90%. When stored in the ambient atmosphere for 120 days, the PLQY of doped PNCs is maintained by more than four times compared to host PNCs. A combination of 3D‐printed conversion layers containing green‐, yellow‐, and red‐emitting doped PNCs with blue light‐emitting diodes results in stable white light with superior color qualities. Hence, new composites with desired properties are developed as an alternative to conventional color phosphors. 
    more » « less